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9.1.1 Thermodynamique statistique

Approche thermodynamique : dans une approche thermodynamique,
on considère des variables d’états macroscopiques (U ,V ,N) décrivant les
processus à l’échelle macroscopique. Ce faisant, on ignore les variables
d’état microscopiques (q1 . . . qN , p1 . . . pN ) décrivant les processus entre
constituants élémentaires à l’échelle microscopique.

Approche statistique : dans une approche statistique, on veut lier les
états microscopiques aux états macroscopiques. Pour ce faire, on définit
un ensemble statistique.

Ensemble statistique : une collection d’états microscopiques qui
cöıncident avec les états macroscopiques dans lesquels le système est
susceptible de se trouver compte tenu des contraintes extérieures
imposées sur le système (états accessibles).

1 Ensemble microcanonique : système isolé : (U ,V ,N) constants

2 Ensemble canonique : système fermé et rigide : (V ,N) constants

3 Ensemble grand-canonique : système ouvert et rigide : (V ) constant
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9.1.2 Descriptions macoscopique et microscopique

Description macroscopique : la quantité de matière est décrite en
termes de moles NA = 6.022 · 1023 de constituants élémentaires
(particules : molécules ou atomes).

Description microscopique : la quantité de matière est décrite en
termes de particules.

Approche microscopique : on remplace les moles de particules par les
particules. Il faut alors remplacer la constante des gaz parfaits R par la
constante de Boltzmann kB où R = NA kB .

Descriptions : microscopique et macroscopique

(9.1)

Equation d’état : du gaz parfait constitué de N particules

(9.2)
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9.2.1 Entropie d’un mélange de gaz parfaits

Système isolé : processus : gaz parfaits 1 et 2 mélangés à température
T et pression p constantes.

Ensemble microcanonique : système isolé : (U ,V ,N) constants

Etat initial i : gaz parfaits distincts 1 et 2 à température T et pression p
séparés par une paroi mobile et diatherme.

1 Volumes : V1 et V2

2 Nombres de particules : N1 et N2

Etat final f : mélange homogène de gaz parfaits 1 et 2 à température T
et pression p sans paroi (après diffusion).

1 Volume : V = V1 + V2

2 Nombre de particules : N = N1 +N2
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9.2.1 Entropie d’un mélange de gaz parfaits

Variations d’entropie : processus isotherme (5.93) gaz parfaits : (9.3)

Variation d’entropie totale : processus de mélange isotherme

(9.4)

Volumes initiaux : gaz parfaits

(9.5)

Volume final : gaz parfaits

(9.6)
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9.2.1 Entropie d’un mélange de gaz parfaits

Variation d’entropie totale : (9.5) et (9.6) dans (9.4)

(9.7)

où ∆Si→f est la variation d’entropie due au mélange des gaz parfaits.

Extensivité de l’entropie : gaz parfaits

(9.8)

Troisième principe : (5.31) entropies initiales à température nulle

(9.9)

Troisième principe : (5.30) et (9.9) entropie finale à température nulle

(9.10)
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9.2.1 Entropie d’un mélange de gaz parfaits

Entropie : à température quasi nulle (9.7) dans (9.10)

(9.11)

Lorsqu’on fait tendre la température T d’un mélange de gaz parfaits vers
0, l’entropie S dépend ne plus de la pression p ou de la température T
car p V = N kB T . L’entropie S (N1, N2) est uniquement une fonction
des nombres de particules N1 et N2 de gaz parfaits 1 et 2.

Entropie : (9.11) remis en forme

(9.12)

Entropie : (9.12) remis en forme avec N = N1 +N2 : (9.13)

Afin de pouvoir interpréter statistiquement l’entropie (9.13), il faut
l’exprimer en termes de factorielles grâce à l’approximation de Stirling.
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9.2.2 Approximation de Stirling

Fonction Gamma : généralisation de la factorielle : Γ : R+ → R+

(9.15)

Propriétés : pour n ∈ N : factorielle

(9.16)

Approximation de Stirling : si x ∈ R+ est suffisamment grand

(9.17)
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9.2.2 Approximation de Stirling

Approximation de Stirling : si x ∈ R+ est suffisamment grand

lnx! ' x lnx− x (9.17)

Approximation de Stirling : si n ∈ N est suffisamment grand

(9.14)

Entropie : (9.13)

S (N1, N2) = kB (N lnN − N − N1 lnN1 +N1 − N2 lnN2 +N2)

Entropie : dans la limite des grands nombres (9.14) dans (9.13)

(9.18)

Entropie : (9.18) remis en forme où N = N1 +N2

(9.19)

L’argument du logarithme est la combinaison de N1 particules de gaz
parfait 1 et de N2 particules de gaz parfait 2 parmi N = N1 +N2

particules de gaz parfaits donnant lieu à une interprétation statistique.
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9.2.3 Entropie d’un gaz parfait

Système isolé : processus : détente de Joule d’un gaz parfait 1 à
température T et pression p constantes.

Ensemble microcanonique : système isolé : (U ,V ,N) constants

Etat initial i : gaz parfait à température T et pression p séparé d’un
sous-système vide par une paroi mobile et diatherme.

1 Volumes : V1 (gaz) et V2 (vide)

2 Nombres : N1 (particules) et N2 (espaces vides)

Etat final f : gaz parfait homogène (mélangé au vide) à température T
et pression p sans paroi.

1 Volume : V = V1 + V2

2 Nombre total : N = N1 +N2
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9.2.3 Entropie d’un gaz parfait

Entropie initiale : somme des entropies dans les sous-systèmes
(particules et vide)

(9.21)

Entropie : (9.19)

(9.22)

L’argument du logarithme est la combinaison de N1 particules de gaz
parfait 1 et de N2 particules de gaz parfait 2 parmi N = N1 +N2

particules de gaz parfaits donnant lieu à une interprétation statistique.
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9.2.4 Etats microscopique et macroscopique

Etat microscopique, ou micro-état : état dans lequel toutes les
particules sont discernables. Si on permute deux particules identiques ou
différentes, on modifie l’état microscopique.

Etat macroscopique, ou macro-état : état dans lequel les particules
d’un gaz parfait sont indiscernables. Si on permute deux particules
identiques, on ne modifie pas l’état macroscopique. Si on permute deux
particules différentes, on modifie l’état macroscopique.

1 2 3 4 5

1 2 3 4 5

12 4 3 5

2 14 3 5

Etat macroscopique identique 

Etat macroscopique différent

micro 

macro 

micro 

macro 
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9.2.4 Etats microscopique et macroscopique

Postulat fondamental : dans un système isolé, tous les micro-états ont
la même probabilité de se réaliser dû aux fluctuations qui sont un
processus aléatoire. Les micro-états (accessibles) ont donc une
distribution de probabilité triviale.

(9.20)

Distribution de probabilités : les macro-états ont des probabilités
différentes de se réaliser. Les macro-états ont donc une distribution de
probabilité non triviale.

Nombre de configurations : Ω : nombre de macro-états.

Système : N1 particules de gaz parfait 1 et de N2 particules de gaz
parfait 2 : N = N1 +N2.

Nombre de configurations : nombre de combinaisons de N1 de
particules parmi N = N1 +N2 particules où les N1 particules de gaz 1 et
les N2 particules de gaz 2 sont séparément indiscernables.

(9.23)
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9.2.5 Loi binomiale

1 2 3 4 5

1 2 3 4 5

12 4 3 5

2 14 3 5

Etat macroscopique identique 

Etat macroscopique différent

micro 

macro 

micro 

macro 
1

10

45

120

210

252

210

120

45

10
1

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10
N1

N = 10W(N1) 

Nombre de configurations :

Ω (N1) =
N !

N1!N2!
=

N !

N1! (N − N1)!
≡
(
N
N1

)
(9.23)

Nombre de configurations total : (9.24)
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9.2.5 Loi binomiale

0.001
0.010

0.044

0.117

0.205

0.246

0.205

0.117

0.044

0.010
0.001

0.00

0.05

0.10

0.15

0.20
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0.30

Lp(W)orem ipsum

0 1 2 3 4 5 6 7 8 9 10

p(W) 

N1

N = 10W(N1) 

Loi binomiale : probabilité que le système ait Ω configurations

(9.25)

Condition de normalisation :

(9.26)
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9.2.5 Expérience - Planche de Galton

Planche de Galton : on libère des billes identiques au centre d’un
compartiment supérieur. Elles sont déviées dans leur chute de manière
aléatoire par un réseau de clous disposés de manière régulière et
symétrique. Elles terminent leur chute dans une série de compartiments.
Le jeu télévisé The Wall utilise une planche de Galton.

Distribution : la répartition des billes dans les compartiments illustre la
loi de distribution de N1 molécules de gaz parfait 1 parmi N = N1 +N2

molécules d’un mélange de gaz parfaits 1 et 2 (profil binomial).
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9.2.6 Entropie de Boltzmann

Entropie et nombre de configuration : (9.19) ou (9.22) et (9.23)

S (N1, N2) = kB ln

(
N !

N1!N2!

)
et Ω (N1) =

N !

N1!N2!

Entropie de Boltzmann : (9.23) dans (9.19) ou (9.22)

(9.27)

L’entropie S est une grandeur additive et le nombre de configurations Ω
est une grandeur multiplicative (9.17). Ainsi, S et Ω sont liés par un
logarithme. La constante de Boltzmann kB est un quantum d’entropie.

Evolution des configurations : état initial i → f état final : (9.31)

(isolé)

Evolution des configurations : état initial i → f état final : (9.32)

(réversible) et (irréversible)
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9.2.6 Expérience - Entropie de mélange de boules

Etat initial : on place N1 boules blanches dans un compartiment et N2

boules noires dans un autre compartiment séparés par une grille
métallique. L’entropie initiale Si des boules blanches et noires séparées
est nulle (indiscernabilité des boules : un seul macro-état).

Si = kB ln (Ω1) + kB ln (Ω2) = kB ln

(
N1!

N1!

)
+ kB ln

(
N2!

N2!

)
= 0 (9.28)

Etat final : en enlevant la grille, les boules se mélangent et l’entropie
finale Sf est l’entropie de mélange (processus irréversible).

Sf = kB ln (Ωf ) = kB ln

(
N !

N1!N2!

)
ainsi Sf > Si (9.29)
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9.3.1 Loi multinomiale

Ensemble canonique : une collection d’états microscopiques qui
cöıncident avec les états macroscopiques à volume constant V , à nombre
constant de particules N .

Niveaux d’énergie : on considère un système fermé, rigide et diatherme
avec n niveaux d’énergie discrets Ui où i = 1, .., n.

Nombre total de particules fixe : le nombre de particules Ni de chaque
niveau d’énergie interne Ui peut varier, mais le nombre total de particules
N est fixe.

(9.33)

Energie interne totale : les particules peuvent changer de niveau
d’énergie interne Ui et l’énergie interne U peut varier dû au transfert de
chaleur avec le réservoir.

(9.34)
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9.3.1 Loi multinomiale

Nombre de configurations : de N particules dans n niveaux d’énergie
Ui : (9.23) généralisée avec n types de permutations (indiscernabilité)

(9.35)

Nombre de configurations total : (9.36)

Loi multinomiale : probabilité que le système ait Ω configurations

(9.37)

Condition de normalisation : (9.38)
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9.3.2 Entropies de Gibbs et de Shannon

Nombre de configurations : N particules dans n niveaux d’énergie Ui

Ω (N1, . . . , Nn) =
N !

N1! . . . Nn!
(9.35)

Entropie de Boltzmann : (9.35) dans (9.27)

(9.39)

Entropie de Boltzmann : (9.39) remise en forme

(9.40)

Approximation de Stirling :

lnn! ' n lnn− n (9.14)

Entropie de Boltzmann : (9.14) dans (9.40)

(9.41)
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9.3.2 Entropies de Gibbs et de Shannon

Entropie de Boltzmann : (9.41)

S = kB (N lnN − N)− kB
n∑
i=1

(Ni lnNi − Ni) où
n∑
i=1

Ni = N

Entropie de Boltzmann : (9.41) remise en forme

(9.42)

Probabilité : particule d’énergie interne Ui

(9.43)

Entropie de Boltzmann :

(9.44)
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9.3.2 Entropies de Gibbs et de Shannon

Entropie de Boltzmann : (9.44) version développée : (9.45)

Condition de normalisation : probabilités

(9.46)

Entropie de Gibbs : (9.46) dans (9.45)

(9.47)

Théorie de l’information : l’entropie de Shannon est une grandeur sans
dimension qui quantifie l’information d’une variable aléatoire xi binaire.

Entropie de Shannon :

(9.48)
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9.3.3 Distribution canonique

Distribution canonique : cette distribution est définie lorsque les N
particules sont à l’équilibre dans les n niveaux d’énergie interne.

Etat d’équilibre : d’après la condition d’équilibre du deuxième principe,
l’entropie S est maximale compte tenu des contraintes imposées par le
nombre total N de particules et l’énergie interne totale U à l’équilibre.

Fonction de Lagrange : décrit l’entropie S sous contraintes : (9.49)

où α et β sont appelés multiplicateurs de Lagrange.

Extréma de la fonction de Lagrange : (9.49)

(9.50)

Variation de l’entropie de Boltzmann : (9.42) donne (9.51)

Dr. Sylvain Bréchet 9 Thermodynamique statistique 29 / 67



9.3.3 Distribution canonique

Variation de l’entropie de Boltzmann :

δS = − kB
n∑
i=1

(
ln Ni δNi +Ni δ (ln Ni)

)
(9.51)

Identité variationnelle :

(9.52)

Variation de l’entropie de Boltzmann : (9.52) dans (9.51)

(9.53)

Extréma de la fonction de Lagrange :

δL (S, {Ni}) = δS − αkB

n∑
i=1

δNi − β kB

n∑
i=1

Ui δNi = 0 (9.50)

Extréma liés : (9.53) dans (9.50)

(9.54)
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9.3.3 Distribution canonique

Condition : (9.54) doit être satisfaite pour tout δNi

(9.55)

Nombre de particules : d’énergie interne Ui (9.55)

(9.56)

Probabilité : particule d’énergie interne Ui (9.43)

(9.57)

Nombre de particules total : (9.56)

(9.58)

Distribution canonique : (9.58) dans (9.57)

(9.59)
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9.3.4 Fonction de partition et énergie

Fonction de partition canonique : pour une particule

(9.60)

Distribution canonique : (9.60) dans (9.59)

(9.61)

Rapport de probabilités des niveaux d’énergie interne : (9.61)

(9.62)

Energie interne : ensemble canonique (9.61) et (9.43) dans (9.34)

(9.63)
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9.3.5 Température et énergie libre

Entropie de Gibbs : (9.61) dans (9.47)

(9.64)

Entropie de Gibbs : (9.46) et (9.63) dans (9.64)

(9.65)

Température : (9.65) dans (2.16)

(9.66)

Multiplicateur de Lagrange : (9.66)

(9.67)
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9.3.5 Température et énergie libre

Entropie de Gibbs :

S = kB (N lnZ + β U) (9.65)

Multiplicateur de Lagrange :

β =
1

kB T
(9.67)

Energie interne : (9.67) dans (9.65)

(9.68)

Energie libre : (4.7)

F = U − T S (9.69)

Energie libre : (9.68) dans (9.69)

(9.70)
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9.4 Distribution de Maxwell-Boltzmann
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Dr. Sylvain Bréchet 9 Thermodynamique statistique 35 / 67



9.4.1 Système discret de particules libres

Système discret : N particules libres de masse identique m réparties sur
n niveaux d’énergie Ei où i = 1, .., n.

Energie interne : l’énergie interne macroscopique U du système est la
somme des énergies cinétiques microscopiques Ei des Ni particules libres
réparties sur les n niveaux d’énergie.

(9.119)

Probabilité : particule sur le niveau d’énergie Ei : distribution canonique

(9.120)

Energie cinétique : d’une particule sur le niveau d’énergie Ei

(9.121)

Probabilité : particule de quantité de mouvement pi = (pix, piy, piz)

(9.122)
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9.4.2 Milieu continu de particules libres

Milieu continu : continuum de particules libres de masse identique m et
de quantité de mouvement p qui varie continument.

Fonction de distribution : probabilité d’avoir une particule de quantité
de mouvement p = (px, py, pz) : généralisation de (9.122)

(9.123)

Condition de normalisation : somme continue de probabilité

(9.124)

Paramétrisation : pour obtenir la fonction de distribution de la norme
des quantités de mouvements, on remplace les coordonnées cartésiennes
par les coordonnées sphériques dans l’espace de phase.

(9.125)

Changement de variables : volume infinitésimal de l’espace de phase

(9.126)
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9.4.2 Milieu continu de particules libres

Volume infinitésimal : espace de phase

dpx dpy dpz = p2 dp sin θ dθ dϕ (9.126)

q

O
dq

Angle solide d’une sphère : θ ∈ [0, π) et ϕ ∈ [0, 2π)

(9.128)
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9.4.3 Distribution des quantités de mouvement

Condition de normalisation : (9.125) et (9.126) dans (9.124)

(9.127)

Condition de normalisation : (9.125) et (9.128) dans (9.127)

(9.129)

Constante de normalisation : (9.129) remis en forme

(9.130)

Condition de normalisation : fonction de distribution fp (p)

(9.131)
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9.4.3 Distribution des quantités de mouvement

Fonction de distribution : (9.130) dans (9.129) et (9.131)

(9.132)

m kBT

5 m kBT

25 m kBT

fp(p)

p

1 Dispersion : σp =
√
mkBT augmente si T ou m augmente

2 Regroupement : σp =
√
mkBT diminue si T ou m diminue
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9.4.4 Distribution de l’énergie

Fonction de distribution : de la quantité de mouvement

fp (p) =

(
1

2πmkBT

) 3/2

4πp2 exp

(
− p2

2mkBT

)
(9.132)

Energie cinétique : (9.121) milieu continu

(9.134)

Dérivée de la quantité de mouvement :

(9.135)

Probabilité : volume infinitésimal de l’espace de phase

(9.136)

Fonction de distribution : énergie (9.135) dans (9.136)

(9.137)
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9.4.4 Distribution de l’énergie

Fonction de distribution : (9.132) et (9.134) dans (9.137)

(9.138)

fE (E )

E

kBT

3  kBT

9  kBT

1 Dispersion : σE =
√
kBT augmente si T augmente

2 Regroupement : σE =
√
kBT diminue si T diminue
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9.4.5 Distribution de la vitesse

Fonction de distribution : de la quantité de mouvement

fp (p) =

(
1

2πmkBT

) 3/2

4πp2 exp

(
− p2

2mkBT

)
(9.132)

Vitesse :

(9.140)

Dérivée de la quantité de mouvement :

(9.141)

Probabilité : volume infinitésimal de l’espace de phase

(9.142)

Fonction de distribution : vitesse (9.141) dans (9.142)

(9.143)
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9.4.5 Distribution de la vitesse

Fonction de distribution : (9.132) et (9.140) dans (9.143)

(9.144)

m

kBT

5  kBT

25 kBT

fv(v)

v

m

m

1 Dispersion : σv =
√

kBT
m

augmente si T augmente ou m diminue

2 Regroupement : σv =
√

kBT
m

diminue si T diminue ou m augmente
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9.4.5 Expérience - Appareil de jet statistique

Des billes métalliques dans une bôıte sont mises en mouvement grâce au
mouvement d’oscillation rapide de la plaque inférieure de la bôıte. Elles
effectuent des collisions élastiques entre elles et avec les parois de la
bôıte.

Un petit trou sur le côté de la bôıte laisse s’échapper les billes qui
terminent leur course dans des compartiments de largeur identique.

La répartition des billes dans les compartiments se fait selon leur vitesse
d’éjection à la sortie du trou. Cette répartition suit une distribution de
Maxwell-Boltzmann de la vitesse.
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9.4.5 Distribution de la vitesse

Vitesse la plus probable : qui maximise fv (v) (9.145)

(9.147)

Vitesse moyenne :

(9.149)

Vitesse quadratique moyenne : v̄ < 〈 v 〉 <
√
〈 v2 〉

(9.151)
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9.5 Théorie cinétique des gaz

9.5 Théorie cinétique des gaz
9.5.1 Energie cinétique moyenne
9.5.2 Gaz parfait dans une bôıte
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9.5.1 Energie cinétique moyenne

Système : continuum de particules libres de masse identique m et de
vitesse de norme v qui varie continument.

Energie cinétique moyenne :

(9.153)

Vitesse quadratique moyenne :

(9.151)

Energie cinétique moyenne : (9.151) dans (9.153)

(9.154)

L’équation (9.154) n’est valable que pour un gaz de particules avec 3
degrés de libertés (atomes).

Température : la température T d’un gaz macroscopique de particules
libres est une mesure de l’agitation moléculaire microscopique 〈 v2 〉.
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9.5.2 Gaz parfait dans une bôıte

Système : gaz parfait de N particules libres qui effectuent des collisions
élastiques avec les parois d’une bôıte cubique d’arrête L et ont un
mouvement rectiligne uniforme entre deux collisions.

Particule : mouvement rectiligne uniforme selon l’axe horizontal Ox

1 Condition initiale : x (0) = 0 et vx (0) = vx > 0

2 Collision élastique : x

(
∆t

2

)
= L

3 Condition finale : x (∆t) = 0 et vx (∆t) = − vx < 0

4 Force : Fx exercée par la particule sur la paroi en x = L

5 3e loi de Newton : force −Fx exercée par la paroi sur la particule

vx – vx

t = 0 t = Dt

x
LL

x

vx

O O
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9.5.2 Gaz parfait dans une bôıte

vx – vx

t = 0 t = Dt

x
LL

x

vx

O O

2e loi de Newton : durant un aller-retour

(9.157)

Collision élastique : variation de la quantité de mouvement

(9.158)

Durée : d’un aller-retour

(9.159)

Force : (9.158) et (9.159) dans (9.157)

(9.160)
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9.5.2 Gaz parfait dans une bôıte

vx – vx

t = 0 t = Dt

x
LL

x

vx

O O

Force moyenne : exercée par les N particules sur la paroi (9.96)

(9.161)

Gaz : homogène et isotrope

(9.162)

Pression : exercée sur la paroi d’aire L2 (9.161) et (9.162)

(9.164)

Equation d’état du gaz parfait : (9.164) dans (9.154)

(9.165)
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9.6 Théorème d’équipartition de l’énergie

9.6 Théorème d’équipartition de l’énergie
9.6.1 Théorème d’équipartition de l’énergie
9.6.2 Gaz parfait
9.6.3 Solide
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9.6.1 Théorème d’équipartition de l’énergie

Energie : molécule de gaz parfait avec ν degrés de liberté Γ1, ...,Γν

(9.166)

Condition de normalisation : distribution de probabilité canonique

(9.167)

Intégration par parties : par rapport à Γi

(9.168)

Condition aux limites : (9.168)

(9.169)
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9.6.1 Théorème d’équipartition de l’énergie

Intégrant : (9.168)

(9.170)

Intégration par parties : (9.169) et (9.170) dans (9.168)

(9.171)

Condition de normalisation : (9.171) dans (9.167)

(9.172)

Théorème d’équipartition de l’énergie : (9.172) donne (9.173)

Interprétation : la valeur moyenne des carrés de chaque degré de liberté
αi 〈Γ2

i 〉 apporte une contribution kBT à l’énergie moléculaire moyenne.
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9.6.1 Théorème d’équipartition de l’énergie

Energie moléculaire moyenne : somme des moyennes des degrés de
liberté au carré 〈Γ2

i 〉 multipliés par αi/2.

(9.175)

1 Molécule monoatomique : ν = 3 : {v1, v2, v3}

〈E 〉 =
3∑

i=1

1

2
m 〈 v2i 〉

2 Molécule diatomique rigide : ν = 5 : {v1, v2, v3, ω1, ω2}

〈E 〉 =
3∑

i=1

1

2
m 〈 v2i 〉+

2∑
i=1

1

2
I 〈ω2

i 〉

3 Molécule polyatomique rigide : ν = 6 : {v1, v2, v3, ω1, ω2, ω3}

〈E 〉 =
3∑

i=1

1

2
m 〈 v2i 〉+

3∑
i=1

1

2
Ii 〈ω2

i 〉

4 Molécule diatomique vibrante : ν = 7 : {v1, v2, v3, ω1, ω2, r − r0, ṙ}

〈E 〉 =
3∑

i=1

1

2
m 〈 v2i 〉+

2∑
i=1

1

2
I 〈ω2

i 〉+
1

2
k 〈 (r − r0)2 〉+

1

2
µ 〈 ṙ2 〉
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9.6.2 Gaz parfait

Gaz parfait : l’énergie interne du gaz parfait est uniquement due au
mouvement de N molécules. Donc, l’énergie interne U est N fois
l’énergie moléculaire moyenne 〈E 〉.

Energie interne : (9.175)

(9.181)

Equation d’état du gaz parfait :

p V = N kBT (9.165)

Enthalpie : (9.181) et (9.165) dans (4.29)

(9.182)

Capacités thermiques : isochore et isobare

(9.183)
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9.6.3 Solide

Solide : on modélise un solide comme un réseau cubique d’oscillateurs
harmoniques de constante élastique k entre N atomes de masse m.

Degrés de liberté : ν = 6 par atome

1 Translation : 3 : {v1, v2, v3}
2 Vibration : 3 : {x1 − x1,0, x2 − x2,0, x3 − x3,0}

Energie interne : (9.175)

(9.184)

Enthalpie : (4.29)

(9.185)

Solide indéformable : αp = 0 : (5.7), (5.11) et (5.12)

(9.186)

Loi de Dulong-Petit : capacité thermique atomique

(9.188)
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9.7 Applications

9.7 Applications
9.7.1 Variation de la pression atmosphérique avec l’altitude
9.7.2 Système magnétique à deux niveaux d’énergie

Dr. Sylvain Bréchet 9 Thermodynamique statistique 58 / 67



9.7.1 Variation de la pression atmosphérique avec l’altitude

Système : on modélise l’atmosphère comme un gaz parfait dont les
molécules sont soumises à l’attraction gravitationnelle terrestre. On
néglige l’énergie cinétique de rotation moléculaire.

Energie : l’énergie moléculaire E (v, z) est la somme de l’énergie
cinétique T (v) et potentielle gravitationnelle V (z) par rapport à
l’altitude de référence z = 0 de la surface de la terre.

(9.189)

Fonction de distribution : des vitesses et des altitudes

(9.190)

où fv (v) est la fonction de distribution des vitesses (9.144), fz (z) est la
fonction de distribution des altitudes et Z = Zv Zz.

Fonction de distribution : des altitudes

(9.191)
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9.7.1 Variation de la pression atmosphérique avec l’altitude

Condition de normalisation : vitesses et altitudes (9.190)

(9.192)

Condition de normalisation : distribution de Maxwell-Boltzmann

(9.193)

Condition de normalisation : (9.193) dans (9.192)

Condition de normalisation : (9.191)

(9.194)

Constante de normalisation : (9.194) fonction de partition

(9.195)
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9.7.1 Variation de la pression atmosphérique avec l’altitude

Fonction de distribution : (9.195) dans (9.191)

(9.196)

Rapport des nombres de molécules : (9.191) dans (9.59)

(9.197)

Nombre de molécules : à l’altitude z (9.196) dans (9.197)

(9.198)

Rapport des pressions : gaz parfait (9.165) dans (9.197)

(9.199)

Pression : à l’altitude z (9.197) dans (9.199)

(9.200)
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9.7.1 Variation de la pression atmosphérique avec l’altitude

Variation de hauteur faible : approximation au 1 er ordre

(9.201)

Variation de pression faible : approximation (9.201) dans (9.200)

(9.202)

Masse volumique constante : approximation

(9.203)

Loi de gaz parfait : altitude z = 0

(9.204)

Loi de l’hydrostatique : (9.204) dans (9.203)

(9.205)
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9.7.1 Expérience - Variation de la pression atmosphérique

On mesure la pression atmosphérique à l’aide d’un capteur de pression
qu’on monte avec un treuil sur une hauteur de 6 m. La pression p (z) en
fonction de l’altitude z est représentée graphiquement.

Pour une faible variation de hauteur (z = 6 m) à température ambiante
(T = 293 K), la variation de pression est donnée par la loi de
l’hydrostatique,

p (z)− p (0) = − ρ g z = − 1.2 · 9.81 · 6 Pa = − 70.6 Pa

ce qui signifie que la variation de pression est une fonction linéaire de
l’altitude. Ainsi, la norme de la pente constante du graphique correspond
à la densité de poids ρ g.
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9.7.2 Système magnétique à deux niveaux d’énergie

Système : on considère un système constitué d’un grand nombre
d’aimants permanents de moment magnétique µ plongés dans un champ
d’induction magnétique B = B ẑ où B > 0.

Modèle semi-classique : on suppose que les moments magnétiques µ
des aimants ont une norme µ constante et peuvent avoir deux
orientations (ou configurations) possibles :

1 Sens du champ B : µ1 = µ1 ẑ = µ ẑ où µ > 0

2 Sens opposé au champ B : µ2 = µ2 ẑ = −µ ẑ où µ > 0

Energie magnétique : d’un aimant de moment magnétique µ1

(9.207)

Energie magnétique : d’un aimant de moment magnétique µ2

(9.208)

Fonction de partition : ensemble canonique

(9.209)
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9.7.2 Système magnétique à deux niveaux d’énergie

Probabilité : aimant d’énergie magnétique E1 (9.209) et (9.207)

(9.210)

Probabilité : aimant d’énergie magnétique E2 (9.209) et (9.208)

(9.210)

Valeur moyenne de l’énergie magnétique : (9.119)

(9.211)

Valeur moyenne de l’énergie : (9.207) - (9.210) dans (9.211)

(9.212)
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9.7.2 Système magnétique à deux niveaux d’énergie

Valeur moyenne du moment magnétique :

(9.213)

Valeur moyenne du moment magnétique : (9.210) µ1 = −µ2 = µ

(9.214)

<m>

kBT
mB

10T

2TT
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9.7.2 Système magnétique à deux niveaux d’énergie

Température élevée : approximation de Curie : µB � kBT

(9.215)

Loi de Curie : (9.215) dans (9.214)

(9.216)
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